0=300(28x^2-5)

Simple and best practice solution for 0=300(28x^2-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=300(28x^2-5) equation:



0=300(28x^2-5)
We move all terms to the left:
0-(300(28x^2-5))=0
We add all the numbers together, and all the variables
-(300(28x^2-5))=0
We calculate terms in parentheses: -(300(28x^2-5)), so:
300(28x^2-5)
We multiply parentheses
8400x^2-1500
Back to the equation:
-(8400x^2-1500)
We get rid of parentheses
-8400x^2+1500=0
a = -8400; b = 0; c = +1500;
Δ = b2-4ac
Δ = 02-4·(-8400)·1500
Δ = 50400000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{50400000}=\sqrt{1440000*35}=\sqrt{1440000}*\sqrt{35}=1200\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1200\sqrt{35}}{2*-8400}=\frac{0-1200\sqrt{35}}{-16800} =-\frac{1200\sqrt{35}}{-16800} =-\frac{\sqrt{35}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1200\sqrt{35}}{2*-8400}=\frac{0+1200\sqrt{35}}{-16800} =\frac{1200\sqrt{35}}{-16800} =\frac{\sqrt{35}}{-14} $

See similar equations:

| 2(3-2r=3(r-7) | | X2+5x-150=0 | | 2(2k-12=28 | | (x+3)÷(x+7)=0 | | 10x+60=9x+72 | | 2^{0.09}=x | | 18-4d=30 | | 2g+6=20 | | 15x^2-8x+3=6x | | f/6+27=29 | | 2r+27=77 | | 9(y+2)=99 | | -2x2+x+5=0 | | 18=h/3+16 | | 15x^2+4x-1=2x | | 14+5u=94 | | 3/17=x/10 | | x+15/8=31/4 | | 3x^2+12x-20=5x | | x^2+11x+14=4 | | 4x2-13-12=0 | | 5x^2+3x+3=-x+4 | | 3x^2+12x=2x+8 | | 88=2x+3x+x | | 4x^2+15x=7x-3 | | Y=-70x+4 | | 6y-2=14y+14 | | 1/16=43x-4 | | Y=-90x+300 | | x-2-5=25 | | Y=-3.5x+300 | | Y=3.5x+300 |

Equations solver categories